Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stable Manifold Embeddings with Structured Random Matrices (1209.3312v2)

Published 14 Sep 2012 in cs.IT, math.DG, and math.IT

Abstract: The fields of compressed sensing (CS) and matrix completion have shown that high-dimensional signals with sparse or low-rank structure can be effectively projected into a low-dimensional space (for efficient acquisition or processing) when the projection operator achieves a stable embedding of the data by satisfying the Restricted Isometry Property (RIP). It has also been shown that such stable embeddings can be achieved for general Riemannian submanifolds when random orthoprojectors are used for dimensionality reduction. Due to computational costs and system constraints, the CS community has recently explored the RIP for structured random matrices (e.g., random convolutions, localized measurements, deterministic constructions). The main contribution of this paper is to show that any matrix satisfying the RIP (i.e., providing a stable embedding for sparse signals) can be used to construct a stable embedding for manifold-modeled signals by randomizing the column signs and paying reasonable additional factors in the number of measurements. We demonstrate this result with several new constructions for stable manifold embeddings using structured matrices. This result allows advances in efficient projection schemes for sparse signals to be immediately applied to manifold signal models.

Citations (25)

Summary

We haven't generated a summary for this paper yet.