Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mean squared error minimization for inverse moment problems (1208.6398v1)

Published 31 Aug 2012 in math.OC

Abstract: We consider the problem of approximating the unknown density $u\in L2(\Omega,\lambda)$ of a measure $\mu$ on $\Omega\subset\Rn$, absolutely continuous with respect to some given reference measure $\lambda$, from the only knowledge of finitely many moments of $\mu$. Given $d\in\N$ and moments of order $d$, we provide a polynomial $p_d$ which minimizes the mean square error $\int (u-p)2d\lambda$ over all polynomials $p$ of degree at most $d$. If there is no additional requirement, $p_d$ is obtained as solution of a linear system. In addition, if $p_d$ is expressed in the basis of polynomials that are orthonormal with respect to $\lambda$, its vector of coefficients is just the vector of given moments and no computation is needed. Moreover $p_d\to u$ in $L2(\Omega,\lambda)$ as $d\to\infty$. In general nonnegativity of $p_d$ is not guaranteed even though $u$ is nonnegative. However, with this additional nonnegativity requirement one obtains analogous results but computing $p_d\geq0$ that minimizes $\int (u-p)2d\lambda$ now requires solving an appropriate semidefinite program. We have tested the approach on some applications arising from the reconstruction of geometrical objects and the approximation of solutions of nonlinear differential equations. In all cases our results are significantly better than those obtained with the maximum entropy technique for estimating $u$.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube