Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Eigenvalues of Certain Matrices Over $\mathbb{Z}_m$ (1208.5194v2)

Published 26 Aug 2012 in cs.DM and math.CO

Abstract: Let $m,n>1$ be integers and $\mathbb{P}{n,m}$ be the point set of the projective $(n-1)$-space (defined by [2]) over the ring $\mathbb{Z}_m$of integers modulo $m$. Let $A{n,m}=(a_{uv})$ be the matrix with rows and columns being labeled by elements of $\mathbb{P}{n,m}$, where $a{uv}=1$ if the inner product $< u,v >=0$ and $a_{uv}=0$ otherwise. Let $B_{n,m}=A_{n,m}A_{n,m}t$. The eigenvalues of $B_{n,m}$ have been studied by [1, 2, 3], where their applications in the study of expanders and locally decodable codes were described. In this paper, we completely determine the eigenvalues of $B_{n,m}$ for general integers $m$ and $n$.

Summary

We haven't generated a summary for this paper yet.