Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimum Relative Entropy State Transitions in Linear Stochastic Systems: the Continuous Time Case (1208.3981v1)

Published 20 Aug 2012 in math.OC, cs.IT, cs.SY, math.DS, math.IT, and math.PR

Abstract: This paper is concerned with a dissipativity theory for dynamical systems governed by linear Ito stochastic differential equations driven by random noise with an uncertain drift. The deviation of the noise from a standard Wiener process in the nominal model is quantified by relative entropy. We discuss a dissipation inequality for the noise relative entropy supply. The problem of minimizing the supply required to drive the system between given Gaussian state distributions over a specified time horizon is considered. This problem, known in the literature as the Schroedinger bridge, was treated previously in the context of reciprocal processes. A closed-form smooth solution is obtained for a Hamilton-Jacobi equation for the minimum required relative entropy supply by using nonlinear algebraic techniques.

Citations (14)

Summary

We haven't generated a summary for this paper yet.