Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fooling sets and rank (1208.2920v3)

Published 14 Aug 2012 in math.CO and cs.CC

Abstract: An $n\times n$ matrix $M$ is called a \textit{fooling-set matrix of size $n$} if its diagonal entries are nonzero and $M_{k,\ell} M_{\ell,k} = 0$ for every $k\ne \ell$. Dietzfelbinger, Hromkovi{\v{c}}, and Schnitger (1996) showed that $n \le (\mbox{rk} M)2$, regardless of over which field the rank is computed, and asked whether the exponent on $\mbox{rk} M$ can be improved. We settle this question. In characteristic zero, we construct an infinite family of rational fooling-set matrices with size $n = \binom{\mbox{rk} M+1}{2}$. In nonzero characteristic, we construct an infinite family of matrices with $n= (1+o(1))(\mbox{rk} M)2$.

Citations (11)

Summary

We haven't generated a summary for this paper yet.