Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Norm-constrained determinantal representations of polynomials (1208.2288v1)

Published 10 Aug 2012 in math.FA

Abstract: For every multivariable polynomial $p$, with $p(0)=1$, we construct a determinantal representation $$p=\det (I - K Z),$$ where $Z$ is a diagonal matrix with coordinate variables on the diagonal and $K$ is a complex square matrix. Such a representation is equivalent to the existence of $K$ whose principal minors satisfy certain linear relations. When norm constraints on $K$ are imposed, we give connections to the multivariable von Neumann inequality, Agler denominators, and stability. We show that if a multivariable polynomial $q$, $q(0)=0,$ satisfies the von Neumann inequality, then $1-q$ admits a determinantal representation with $K$ a contraction. On the other hand, every determinantal representation with a contractive $K$ gives rise to a rational inner function in the Schur--Agler class.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.