Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Moment asymptotics for branching random walks in random environment (1208.0306v1)

Published 1 Aug 2012 in math.PR

Abstract: We consider the long-time behaviour of a branching random walk in random environment on the lattice $\Zd$. The migration of particles proceeds according to simple random walk in continuous time, while the medium is given as a random potential of spatially dependent killing/branching rates. The main objects of our interest are the annealed moments $< m_np > $, i.e., the $p$-th moments over the medium of the $n$-th moment over the migration and killing/branching, of the local and global population sizes. For $n=1$, this is well-understood \cite{GM98}, as $m_1$ is closely connected with the parabolic Anderson model. For some special distributions, \cite{A00} extended this to $n\geq2$, but only as to the first term of the asymptotics, using (a recursive version of) a Feynman-Kac formula for $m_n$. In this work we derive also the second term of the asymptotics, for a much larger class of distributions. In particular, we show that $< m_np >$ and $< m_1{np} >$ are asymptotically equal, up to an error $\e{o(t)}$. The cornerstone of our method is a direct Feynman-Kac-type formula for $m_n$, which we establish using the spine techniques developed in \cite{HR11}.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.