Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Whom to Ask? Jury Selection for Decision Making Tasks on Micro-blog Services (1208.0273v1)

Published 1 Aug 2012 in cs.DB

Abstract: It is universal to see people obtain knowledge on micro-blog services by asking others decision making questions. In this paper, we study the Jury Selection Problem(JSP) by utilizing crowdsourcing for decision making tasks on micro-blog services. Specifically, the problem is to enroll a subset of crowd under a limited budget, whose aggregated wisdom via Majority Voting scheme has the lowest probability of drawing a wrong answer(Jury Error Rate-JER). Due to various individual error-rates of the crowd, the calculation of JER is non-trivial. Firstly, we explicitly state that JER is the probability when the number of wrong jurors is larger than half of the size of a jury. To avoid the exponentially increasing calculation of JER, we propose two efficient algorithms and an effective bounding technique. Furthermore, we study the Jury Selection Problem on two crowdsourcing models, one is for altruistic users(AltrM) and the other is for incentive-requiring users(PayM) who require extra payment when enrolled into a task. For the AltrM model, we prove the monotonicity of JER on individual error rate and propose an efficient exact algorithm for JSP. For the PayM model, we prove the NP-hardness of JSP on PayM and propose an efficient greedy-based heuristic algorithm. Finally, we conduct a series of experiments to investigate the traits of JSP, and validate the efficiency and effectiveness of our proposed algorithms on both synthetic and real micro-blog data.

Citations (154)

Summary

We haven't generated a summary for this paper yet.