Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Systematic DFT Frames: Principle, Eigenvalues Structure, and Applications (1207.6146v2)

Published 26 Jul 2012 in cs.IT and math.IT

Abstract: Motivated by a host of recent applications requiring some amount of redundancy, frames are becoming a standard tool in the signal processing toolbox. In this paper, we study a specific class of frames, known as discrete Fourier transform (DFT) codes, and introduce the notion of systematic frames for this class. This is encouraged by a new application of frames, namely, distributed source coding that uses DFT codes for compression. Studying their extreme eigenvalues, we show that, unlike DFT frames, systematic DFT frames are not necessarily tight. Then, we come up with conditions for which these frames can be tight. In either case, the best and worst systematic frames are established in the minimum mean-squared reconstruction error sense. Eigenvalues of DFT frames and their subframes play a pivotal role in this work. Particularly, we derive some bounds on the extreme eigenvalues DFT subframes which are used to prove most of the results; these bounds are valuable independently.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.