Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Factorization invariants in half-factorial affine semigroups (1207.5838v1)

Published 24 Jul 2012 in math.AC

Abstract: Let $\mathbb{N} \mathcal{A}$ be the monoid generated by $\mathcal{A} = {\mathbf{a}1, ..., \mathbf{a}_n} \subseteq \mathbb{Z}d.$ We introduce the homogeneous catenary degree of $\mathbb{N} \mathcal{A}$ as the smallest $N \in \mathbb N$ with the following property: for each $\mathbf{a} \in \mathbb{N} \mathcal{A}$ and any two factorizations $\mathbf{u}, \mathbf{v}$ of $\mathbf{a}$, there exists factorizations $\mathbf{u} = \mathbf{w}_1, ..., \mathbf{w}_t = \mathbf{v} $ of $\mathbf{a}$ such that, for every $k, \mathrm{d}(\mathbf{w}_k, \mathbf{w}{k+1}) \leq N,$ where $\mathrm{d}$ is the usual distance between factorizations, and the length of $\mathbf{w}_k, |\mathbf{w}_k|,$ is less than or equal to $\max{|\mathbf{u}|, |\mathbf{v}|}.$ We prove that the homogeneous catenary degree of $\mathbb{N} \mathcal{A}$ improves the monotone catenary degree as upper bound for the ordinary catenary degree, and we show that it can be effectively computed. We also prove that for half-factorial monoids, the tame degree and the $\omega$-primality coincide, and that all possible catenary degrees of the elements of an affine semigroup of this kind occur as the catenary degree of one of its Betti elements.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.