Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum teleportation via maximum-confidence quantum measurements (1207.2188v1)

Published 9 Jul 2012 in quant-ph

Abstract: We investigate the problem of teleporting unknown qudit states via pure quantum channels with nonmaximal Schmidt rank. This process is mapped to the problem of discriminating among nonorthogonal symmetric states which are linearly dependent and equally likely. It is shown that by applying an optimized maximum-confidence (MC) measurement for accomplishing this task, one reaches the maximum possible teleportation fidelity after a conclusive event in the discrimination process, which in turn occurs with the maximum success probability. In this case, such fidelity depends only on the Schmidt rank of the channel and it is larger than the optimal one achieved, deterministically, by the standard teleportation protocol. Furthermore, we show that there are quantum channels for which it is possible to apply a k-stage sequential MC measurement in the discrimination process such that a conclusive event at any stage leads to a teleportation fidelity above the aforementioned optimal one and, consequently, increases the overall success probability of teleportation with a fidelity above this limit.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.