Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cosmological Inflation and the Quantum Measurement Problem (1207.2086v2)

Published 9 Jul 2012 in hep-th, astro-ph.CO, gr-qc, hep-ph, and quant-ph

Abstract: According to cosmological inflation, the inhomogeneities in our universe are of quantum mechanical origin. This scenario is phenomenologically very appealing as it solves the puzzles of the standard hot big bang model and naturally explains why the spectrum of cosmological perturbations is almost scale invariant. It is also an ideal playground to discuss deep questions among which is the quantum measurement problem in a cosmological context. Although the large squeezing of the quantum state of the perturbations and the phenomenon of decoherence explain many aspects of the quantum to classical transition, it remains to understand how a specific outcome can be produced in the early universe, in the absence of any observer. The Continuous Spontaneous Localization (CSL) approach to quantum mechanics attempts to solve the quantum measurement question in a general context. In this framework, the wavefunction collapse is caused by adding new non linear and stochastic terms to the Schroedinger equation. In this paper, we apply this theory to inflation, which amounts to solving the CSL parametric oscillator case. We choose the wavefunction collapse to occur on an eigenstate of the Mukhanov-Sasaki variable and discuss the corresponding modified Schroedinger equation. Then, we compute the power spectrum of the perturbations and show that it acquires a universal shape with two branches, one which remains scale invariant and one with nS=4, a spectral index in obvious contradiction with the Cosmic Microwave Background (CMB) anisotropy observations. The requirement that the non-scale invariant part be outside the observational window puts stringent constraints on the parameter controlling the deviations from ordinary quantum mechanics... (Abridged).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.