Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Violating the Shannon capacity of metric graphs with entanglement (1207.1779v1)

Published 7 Jul 2012 in quant-ph, cs.IT, math.CO, and math.IT

Abstract: The Shannon capacity of a graph G is the maximum asymptotic rate at which messages can be sent with zero probability of error through a noisy channel with confusability graph G. This extensively studied graph parameter disregards the fact that on atomic scales, Nature behaves in line with quantum mechanics. Entanglement, arguably the most counterintuitive feature of the theory, turns out to be a useful resource for communication across noisy channels. Recently, Leung, Mancinska, Matthews, Ozols and Roy [Comm. Math. Phys. 311, 2012] presented two examples of graphs whose Shannon capacity is strictly less than the capacity attainable if the sender and receiver have entangled quantum systems. Here we give new, possibly infinite, families of graphs for which the entangled capacity exceeds the Shannon capacity.

Citations (18)

Summary

We haven't generated a summary for this paper yet.