The asymptotic spectrum distance, graph limits, and the Shannon capacity (2404.16763v1)
Abstract: Determining the Shannon capacity of graphs is a long-standing open problem in information theory, graph theory and combinatorial optimization. Over decades, a wide range of upper and lower bound methods have been developed to analyze this problem. However, despite tremendous effort, even small instances of the problem have remained open. In recent years, a new dual characterization of the Shannon capacity of graphs, asymptotic spectrum duality, has unified and extended known upper bound methods and structural theorems. In this paper, building on asymptotic spectrum duality, we develop a new theory of graph distance, that we call asymptotic spectrum distance, and corresponding limits (reminiscent of, but different from, the celebrated theory of cut-norm, graphons and flag algebras). We propose a graph limit approach to the Shannon capacity problem: to determine the Shannon capacity of a graph, construct a sequence of easier to analyse graphs converging to it. (1) We give a very general construction of non-trivial converging sequences of graphs (in a family of circulant graphs). (2) We construct Cauchy sequences of finite graphs that do not converge to any finite graph, but do converge to an infinite graph. We establish strong connections between convergence questions of finite graphs and the asymptotic properties of Borsuk-like infinite graphs on the circle. (3) We observe that all best-known lower bound constructions for Shannon capacity of small odd cycles can be obtained from a "finite" version of the graph limit approach. We develop computational and theoretical aspects of this approach and use these to obtain a new Shannon capacity lower bound for the fifteen-cycle. The theory of asymptotic spectrum distance applies not only to Shannon capacity of graphs; indeed, we will develop it for a general class of mathematical objects and their asymptotic properties.
- The minrank of random graphs over arbitrary fields. Israel J. Math., 235(1):63–77, 2020. doi:10.1007/s11856-019-1945-8.
- Homomorphisms of 3333-chromatic graphs. Discrete Math., 54(2):127–132, 1985. doi:10.1016/0012-365X(85)90073-1.
- Fast matrix multiplication: Limitations of the Coppersmith-Winograd method. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing (STOC 2015), pages 585–593. ACM, 2015. doi:10.1145/2746539.2746554.
- The Shannon capacity of a graph and the independence numbers of its powers. IEEE Trans. Inform. Theory, 52(5):2172–2176, 2006. doi:10.1109/TIT.2006.872856.
- Josh Alman. Limits on the universal method for matrix multiplication. Theory of Computing, 17(1):1–30, 2021. arXiv:1812.08731, doi:10.4086/toc.2021.v017a001.
- Noga Alon. The Shannon capacity of a union. Combinatorica, 18(3):301–310, 1998. doi:10.1007/PL00009824.
- Noga Alon. Graph powers. In Contemporary combinatorics, volume 10 of Bolyai Soc. Math. Stud., pages 11–28. János Bolyai Math. Soc., Budapest, 2002. URL: https://web.math.princeton.edu/~nalon/PDFS/cap2.pdf.
- On a fractional version of Haemers’ bound. IEEE Trans. Inform. Theory, 65(6):3340–3348, 2019. arXiv:1802.00476, doi:10.1109/TIT.2018.2889108.
- Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing. Adv. Math., 219(6):1801–1851, 2008. doi:10.1016/j.aim.2008.07.008.
- Discreteness of asymptotic tensor ranks (extended abstract). In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024), pages 20:1–20:14, 2024. doi:10.4230/LIPICS.ITCS.2024.20.
- A tensor restriction theorem over finite fields, 2022. doi:10.48550/ARXIV.2211.12319.
- A nontrivial lower bound on the Shannon capacities of the complements of odd cycles. IEEE Trans. Inform. Theory, 49(3):721–722, 2003. doi:10.1109/TIT.2002.808128.
- Convex-round graphs are circular-perfect. J. Graph Theory, 40(3):182–194, 2002. doi:10.1002/jgt.10047.
- Markus Bläser. Fast Matrix Multiplication. Number 5 in Graduate Surveys. Theory of Computing Library, 2013. doi:10.4086/toc.gs.2013.005.
- Anna Blasiak. A graph-theoretic approach to network coding. PhD thesis, 2013. URL: https://hdl.handle.net/1813/34147.
- On the independence number of the strong product of cycle-powers. Discrete Math., 313(1):105–110, 2013. doi:10.1016/j.disc.2012.09.008.
- A combinatorial packing problem. In Computers in algebra and number theory (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1970), volume IV of SIAM-AMS Proc., pages 97–108. Amer. Math. Soc., 1971. URL: https://math.mit.edu/~rstan/pubs/pubfiles/17.pdf.
- On the theta number of powers of cycle graphs. Combinatorica, 33(3):297–317, 2013. doi:10.1007/s00493-013-2950-x.
- Zum Darstellungssatz von Kadison-Dubois. Arch. Math. (Basel), 40(5):421–428, 1983. doi:10.1007/BF01192806.
- Circular colourings of infinite graphs. Bull. Inst. Combin. Appl., 24:79–80, 1998.
- The Sperner capacity of linear and nonlinear codes for the cyclic triangle. J. Algebraic Combin., 2(1):31–48, 1993. doi:10.1023/A:1022424630332.
- Some remarks on the Shannon capacity of odd cycles. Ars Combin., 66:243–257, 2003. URL: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fa75fe8da43bc637170fbeeb58d4c07877ed4197.
- On the asymptotic nonnegative rank of matrices and its applications in information theory, 2024. arXiv:2308.07187.
- Barriers for fast matrix multiplication from irreversibility. Theory of Computing, 17(2):1–32, 2021. doi:10.4086/toc.2021.v017a002.
- Universal points in the asymptotic spectrum of tensors. J. Amer. Math. Soc., 36(1):31–79, 2023. doi:10.1090/jams/996.
- Matrix multiplication via arithmetic progressions. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC 1987), pages 1–6. ACM, 1987. doi:10.1145/28395.28396.
- On chromatic graphs. Mat. Lapok, 18:1–4, 1967.
- Tobias Fritz. A unified construction of semiring-homomorphic graph invariants. Journal of Algebraic Combinatorics, 54:693–718, 2021. arXiv:1901.01090, doi:10.1007/s10801-020-00983-y.
- Tobias Fritz. Abstract Vergleichsstellensätze for preordered semifields and semirings I. SIAM J. Appl. Algebra Geom., 7(2):505–547, 2023. doi:10.1137/22M1498413.
- Linear Shannon capacity of Cayley graphs. In 2021 IEEE International Symposium on Information Theory (ISIT), page 988–992. IEEE Press, 2021. arXiv:2009.05685, doi:10.1109/ISIT45174.2021.9517713.
- The minrank of random graphs. IEEE Trans. Inform. Theory, 64(11):6990–6995, 2018. doi:10.1109/TIT.2018.2810384.
- Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.gurobi.com.
- Willem Haemers. On some problems of Lovász concerning the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(2):231–232, 1979. doi:10.1109/TIT.1979.1056027.
- Willem Haemers. An upper bound for the Shannon capacity of a graph. In Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), volume 25 of Colloq. Math. Soc. János Bolyai, pages 267–272. North-Holland, Amsterdam-New York, 1981.
- Raleigh S. Hales. Numerical invariants and the strong product of graphs. J. Combinatorial Theory Ser. B, 15:146–155, 1973. doi:10.1016/0095-8956(73)90014-2.
- A first course in dynamics. Cambridge University Press, New York, 2003. With a panorama of recent developments. doi:10.1017/CBO9780511998188.
- Graphs and homomorphisms, volume 28 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004. doi:10.1093/acprof:oso/9780198528173.001.0001.
- Orthogonal representations, projective rank, and fractional minimum positive semidefinite rank: connections and new directions. Electron. J. Linear Algebra, 32:98–115, 2017. doi:10.13001/1081-3810.3102.
- Some lower bounds on the Shannon capacity. Journal of Applied Computer Science, 22(2):31–42, 2014. URL: http://it.p.lodz.pl/file.php/12/2014-2/jacs-2014-2-Jurkiewicz-et-al.pdf.
- Marcin Jurkiewicz. A survey on known values and bounds on the Shannon capacity. Selected Topics in Modern Mathematics, pages 115–128, 2014. URL: http://suw.biblos.pk.edu.pl/resources/i4/i9/i4/i1/i0/r49410/GancarzewiczG_SelectedTopics.pdf.
- The asymptotic spectrum of LOCC transformations. IEEE Trans. Inform. Theory, 66(1):155–166, 2020. doi:10.1109/TIT.2019.2927555.
- Aleksandr Ya. Khinchin. Continued Fractions. The University of Chicago Press, First Phoenix edition edition, 1964.
- Zero-error information theory. IEEE Trans. Inform. Theory, 44(6):2207–2229, 1998. Information theory: 1948–1998. doi:10.1109/18.720537.
- Dmitry Kozlov. Combinatorial algebraic topology, volume 21 of Algorithms and Computation in Mathematics. Springer, Berlin, 2008. doi:10.1007/978-3-540-71962-5.
- László Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A, 25(3):319–324, 1978. doi:10.1016/0097-3165(78)90022-5.
- László Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1–7, 1979. doi:10.1109/TIT.1979.1055985.
- László Lovász. Large networks and graph limits, volume 60 of American Mathematical Society Colloquium Publications. American Mathematical Society, 2012. doi:10.1090/coll/060.
- Limits of dense graph sequences. J. Combin. Theory Ser. B, 96(6):933–957, 2006. doi:10.1016/j.jctb.2006.05.002.
- Quantum asymptotic spectra of graphs and non-commutative graphs, and quantum Shannon capacities. IEEE Trans. Inform. Theory, 67(1):416–432, 2021. doi:10.1109/TIT.2020.3032686.
- Murray Marshall. Positive polynomials and sums of squares, volume 146 of Mathematical Surveys and Monographs. American Mathematical Society, 2008. doi:10.1090/surv/146.
- K. Ashik Mathew and Patric R. J. Östergård. New lower bounds for the Shannon capacity of odd cycles. Des. Codes Cryptogr., 84(1-2):13–22, 2017. doi:10.1007/s10623-016-0194-7.
- James R. Munkres. Topology. Prentice Hall, Inc., Upper Saddle River, NJ, second edition, 2000.
- Positive polynomials. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2001. From Hilbert’s 17th problem to real algebra. doi:10.1007/978-3-662-04648-7.
- René Peeters. Orthogonal representations over finite fields and the chromatic number of graphs. Combinatorica, 16(3):417–431, 1996. doi:10.1007/BF01261326.
- Sven C. Polak. New methods in coding theory: Error-correcting codes and the Shannon capacity. PhD thesis, University of Amsterdam, 2019. URL: https://hdl.handle.net/11245.1/393eb25b-c1ba-4c6f-89e8-c439a97358b6.
- Sven C. Polak. Semidefinite programming bounds for Lee codes. Discrete Math., 342(9):2579–2589, 2019. doi:10.1016/j.disc.2019.05.019.
- Victoria Powers. Certificates of positivity for real polynomials—theory, practice, and applications, volume 69 of Developments in Mathematics. Springer, Cham, 2021. doi:10.1007/978-3-030-85547-5.
- New lower bound on the Shannon capacity of C7subscript𝐶7C_{7}italic_C start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT from circular graphs. Inform. Process. Lett., 143:37–40, 2019. doi:10.1016/j.ipl.2018.11.006.
- Alexander A. Razborov. Flag algebras. J. Symbolic Logic, 72(4):1239–1282, 2007. doi:10.2178/jsl/1203350785.
- Moshe Rosenfeld. On a problem of C. E. Shannon in graph theory. Proc. Amer. Math. Soc., 18:315–319, 1967. doi:10.2307/2035288.
- Mathematical discoveries from program search with large language models. Nature, 625(7995):468–475, January 2024. doi:10.1038/s41586-023-06924-6.
- Walter Rudin. Principles of mathematical analysis. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, third edition, 1976.
- Amortized circuit complexity, formal complexity measures, and catalytic algorithms. In 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS 2021), pages 759–769. IEEE, 2021. doi:10.1109/FOCS52979.2021.00079.
- Alexander Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. B, volume 24B of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003.
- Alexander Schrijver. On the Shannon capacity of sums and products of graphs. Indag. Math. (N.S.), 34(1):37–41, 2023. doi:10.1016/j.indag.2022.08.009.
- Claude E. Shannon. The zero error capacity of a noisy channel. Institute of Radio Engineers Transactions on Information Theory, IT-2,:8–19, 1956. doi:10.1109/tit.1956.1056798.
- Gábor Simonyi. Shannon capacity and the categorical product. Electron. J. Combin., 28(1), 2021. doi:10.37236/9113.
- Volker Strassen. Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math., 375/376:406–443, 1987. doi:10.1515/crll.1987.375-376.406.
- Volker Strassen. The asymptotic spectrum of tensors. J. Reine Angew. Math., 384:102–152, 1988. doi:10.1515/crll.1988.384.102.
- Volker Strassen. Degeneration and complexity of bilinear maps: some asymptotic spectra. J. Reine Angew. Math., 413:127–180, 1991. doi:10.1515/crll.1991.413.127.
- Andrew Vince. Star chromatic number. J. Graph Theory, 12(4):551–559, 1988. doi:10.1002/jgt.3190120411.
- Péter Vrana. Probabilistic refinement of the asymptotic spectrum of graphs. Combinatorica, 41(6):873–904, 2021. doi:10.1007/s00493-020-4324-5.
- New bounds for matrix multiplication: from alpha to omega, 2023. arXiv:2307.07970.
- Asymptotic spectra: Theory, applications and extensions, 2023. URL: https://staff.fnwi.uva.nl/j.zuiddam/papers/convexity.pdf.
- Xuding Zhu. Star chromatic numbers and products of graphs. J. Graph Theory, 16(6):557–569, 1992. doi:10.1002/jgt.3190160604.
- Xuding Zhu. Circular perfect graphs. J. Graph Theory, 48(3):186–209, 2005. doi:10.1002/jgt.20050.
- Xuding Zhu. Recent developments in circular colouring of graphs. In Topics in discrete mathematics, volume 26 of Algorithms Combin., pages 497–550. Springer, Berlin, 2006. doi:10.1007/3-540-33700-8\_25.
- Daniel G. Zhu. An improved lower bound on the shannon capacities of complements of odd cycles, 2024. arXiv:2402.10025.
- Jeroen Zuiddam. Algebraic complexity, asymptotic spectra and entanglement polytopes. PhD thesis, University of Amsterdam, 2018. URL: https://staff.fnwi.uva.nl/j.zuiddam/diss/diss_v2.pdf.
- Jeroen Zuiddam. The asymptotic spectrum of graphs and the Shannon capacity. Combinatorica, 39(5):1173–1184, 2019. doi:10.1007/s00493-019-3992-5.