Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Membrane Sigma-Models and Quantization of Non-Geometric Flux Backgrounds (1207.0926v2)

Published 4 Jul 2012 in hep-th, math-ph, math.MP, and math.QA

Abstract: We develop quantization techniques for describing the nonassociative geometry probed by closed strings in flat non-geometric R-flux backgrounds M. Starting from a suitable Courant sigma-model on an open membrane with target space M, regarded as a topological sector of closed string dynamics in R-space, we derive a twisted Poisson sigma-model on the boundary of the membrane whose target space is the cotangent bundle T*M and whose quasi-Poisson structure coincides with those previously proposed. We argue that from the membrane perspective the path integral over multivalued closed string fields in Q-space is equivalent to integrating over open strings in R-space. The corresponding boundary correlation functions reproduce Kontsevich's deformation quantization formula for the twisted Poisson manifolds. For constant R-flux, we derive closed formulas for the corresponding nonassociative star product and its associator, and compare them with previous proposals for a 3-product of fields on R-space. We develop various versions of the Seiberg-Witten map which relate our nonassociative star products to associative ones and add fluctuations to the R-flux background. We show that the Kontsevich formula coincides with the star product obtained by quantizing the dual of a Lie 2-algebra via convolution in an integrating Lie 2-group associated to the T-dual doubled geometry, and hence clarify the relation to the twisted convolution products for topological nonassociative torus bundles. We further demonstrate how our approach leads to a consistent quantization of Nambu-Poisson 3-brackets.

Citations (146)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.