Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimal Faithful Representation of the Heisenberg Lie Algebra with Abelian Factor (1206.5867v2)

Published 26 Jun 2012 in math.RT and math.RA

Abstract: For a finite dimensional Lie algebra $\g$ over a field $\k$ of characteristic zero, the $\mu$-function (respectively $\mu_{nil}$-function) is defined to be the minimal dimension of $V$ such that $\g$ admits a faithful representation (respectively a faithful nilrepresentation) on $V$. Let $\h_m$ be the Heisenberg Lie algebra of dimension $2m + 1$ and let $\mathfrak{a}n$ be the abelian Lie algebra of dimension $n$. The aim of this paper is to compute $\mu(\h_m \oplus \mathfrak{a}_n)$ and $\mu{nil}(\h_m \oplus \mathfrak{a}_n)$ for all $m,n \in \mathbb{N}$.

Summary

We haven't generated a summary for this paper yet.