Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Bayesian Approach to Approximate Joint Diagonalization of Square Matrices

Published 18 Jun 2012 in stat.CO, cs.LG, and stat.ME | (1206.4666v1)

Abstract: We present a Bayesian scheme for the approximate diagonalisation of several square matrices which are not necessarily symmetric. A Gibbs sampler is derived to simulate samples of the common eigenvectors and the eigenvalues for these matrices. Several synthetic examples are used to illustrate the performance of the proposed Gibbs sampler and we then provide comparisons to several other joint diagonalization algorithms, which shows that the Gibbs sampler achieves the state-of-the-art performance on the examples considered. As a byproduct, the output of the Gibbs sampler could be used to estimate the log marginal likelihood, however we employ the approximation based on the Bayesian information criterion (BIC) which in the synthetic examples considered correctly located the number of common eigenvectors. We then succesfully applied the sampler to the source separation problem as well as the common principal component analysis and the common spatial pattern analysis problems.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.