Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Particle-Gibbs Sampling For Bayesian Feature Allocation Models (2001.09367v1)

Published 25 Jan 2020 in stat.CO, cs.LG, and stat.ML

Abstract: Bayesian feature allocation models are a popular tool for modelling data with a combinatorial latent structure. Exact inference in these models is generally intractable and so practitioners typically apply Markov Chain Monte Carlo (MCMC) methods for posterior inference. The most widely used MCMC strategies rely on an element wise Gibbs update of the feature allocation matrix. These element wise updates can be inefficient as features are typically strongly correlated. To overcome this problem we have developed a Gibbs sampler that can update an entire row of the feature allocation matrix in a single move. However, this sampler is impractical for models with a large number of features as the computational complexity scales exponentially in the number of features. We develop a Particle Gibbs sampler that targets the same distribution as the row wise Gibbs updates, but has computational complexity that only grows linearly in the number of features. We compare the performance of our proposed methods to the standard Gibbs sampler using synthetic data from a range of feature allocation models. Our results suggest that row wise updates using the PG methodology can significantly improve the performance of samplers for feature allocation models.

Summary

We haven't generated a summary for this paper yet.