Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detection Performance in Balanced Binary Relay Trees with Node and Link Failures (1206.0244v2)

Published 1 Jun 2012 in cs.IT and math.IT

Abstract: We study the distributed detection problem in the context of a balanced binary relay tree, where the leaves of the tree correspond to $N$ identical and independent sensors generating binary messages. The root of the tree is a fusion center making an overall decision. Every other node is a relay node that aggregates the messages received from its child nodes into a new message and sends it up toward the fusion center. We derive upper and lower bounds for the total error probability $P_N$ as explicit functions of $N$ in the case where nodes and links fail with certain probabilities. These characterize the asymptotic decay rate of the total error probability as $N$ goes to infinity. Naturally, this decay rate is not larger than that in the non-failure case, which is $\sqrt N$. However, we derive an explicit necessary and sufficient condition on the decay rate of the local failure probabilities $p_k$ (combination of node and link failure probabilities at each level) such that the decay rate of the total error probability in the failure case is the same as that of the non-failure case. More precisely, we show that $\log P_N{-1}=\Theta(\sqrt N)$ if and only if $\log p_k{-1}=\Omega(2{k/2})$.

Citations (14)

Summary

We haven't generated a summary for this paper yet.