Papers
Topics
Authors
Recent
Search
2000 character limit reached

Error Probability Bounds for Balanced Binary Relay Trees

Published 5 May 2011 in cs.IT, math.IT, and stat.AP | (1105.1187v1)

Abstract: We study the detection error probability associated with a balanced binary relay tree, where the leaves of the tree correspond to $N$ identical and independent detectors. The root of the tree represents a fusion center that makes the overall detection decision. Each of the other nodes in the tree are relay nodes that combine two binary messages to form a single output binary message. In this way, the information from the detectors is aggregated into the fusion center via the intermediate relay nodes. In this context, we describe the evolution of Type I and Type II error probabilities of the binary data as it propagates from the leaves towards the root. Tight upper and lower bounds for the total error probability at the fusion center as functions of $N$ are derived. These characterize how fast the total error probability converges to 0 with respect to $N$, even if the individual sensors have error probabilities that converge to 1/2.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.