Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithmic randomness and stochastic selection function (1205.5504v4)

Published 24 May 2012 in cs.IT and math.IT

Abstract: We show algorithmic randomness versions of the two classical theorems on subsequences of normal numbers. One is Kamae-Weiss theorem (Kamae 1973) on normal numbers, which characterize the selection function that preserves normal numbers. Another one is the Steinhaus (1922) theorem on normal numbers, which characterize the normality from their subsequences. In van Lambalgen (1987), an algorithmic analogy to Kamae-Weiss theorem is conjectured in terms of algorithmic randomness and complexity. In this paper we consider two types of algorithmic random sequence; one is ML-random sequences and the other one is the set of sequences that have maximal complexity rate. Then we show algorithmic randomness versions of corresponding theorems to the above classical results.

Summary

We haven't generated a summary for this paper yet.