2000 character limit reached
Algorithmic analogies to kamae-Weiss theorem on normal numbers
Published 16 Jun 2011 in cs.IT and math.IT | (1106.3153v3)
Abstract: In this paper we study subsequences of random numbers. In Kamae (1973), selection functions that depend only on coordinates are studied, and their necessary and sufficient condition for the selected sequences to be normal numbers is given. In van Lambalgen (1987), an algorithmic analogy to the theorem is conjectured in terms of algorithmic randomness and Kolmogorov complexity. In this paper, we show different algorithmic analogies to the theorem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.