Alignment and integration of complex networks by hypergraph-based spectral clustering (1205.3630v3)
Abstract: Complex networks possess a rich, multi-scale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.