Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Everywhere-Sparse Spanners via Dense Subgraphs (1205.0144v1)

Published 1 May 2012 in cs.DS

Abstract: The significant progress in constructing graph spanners that are sparse (small number of edges) or light (low total weight) has skipped spanners that are everywhere-sparse (small maximum degree). This disparity is in line with other network design problems, where the maximum-degree objective has been a notorious technical challenge. Our main result is for the Lowest Degree 2-Spanner (LD2S) problem, where the goal is to compute a 2-spanner of an input graph so as to minimize the maximum degree. We design a polynomial-time algorithm achieving approximation factor $\tilde O(\Delta{3-2\sqrt{2}}) \approx \tilde O(\Delta{0.172})$, where $\Delta$ is the maximum degree of the input graph. The previous $\tilde O(\Delta{1/4})$ -approximation was proved nearly two decades ago by Kortsarz and Peleg [SODA 1994, SICOMP 1998]. Our main conceptual contribution is to establish a formal connection between LD2S and a variant of the Densest k-Subgraph (DkS) problem. Specifically, we design for both problems strong relaxations based on the Sherali-Adams linear programming (LP) hierarchy, and show that "faithful" randomized rounding of the DkS-variant can be used to round LD2S solutions. Our notion of faithfulness intuitively means that all vertices and edges are chosen with probability proportional to their LP value, but the precise formulation is more subtle. Unfortunately, the best algorithms known for DkS use the Lov\'asz-Schrijver LP hierarchy in a non-faithful way [Bhaskara, Charikar, Chlamtac, Feige, and Vijayaraghavan, STOC 2010]. Our main technical contribution is to overcome this shortcoming, while still matching the gap that arises in random graphs by planting a subgraph with same log-density.

Citations (46)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.