Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Fine-grained Hardness of Approximation of Linear Equations (2106.13210v1)

Published 24 Jun 2021 in cs.DS and cs.CC

Abstract: The problem of solving linear systems is one of the most fundamental problems in computer science, where given a satisfiable linear system $(A,b)$, for $A \in \mathbb{R}{n \times n}$ and $b \in \mathbb{R}n$, we wish to find a vector $x \in \mathbb{R}n$ such that $Ax = b$. The current best algorithms for solving dense linear systems reduce the problem to matrix multiplication, and run in time $O(n{\omega})$. We consider the problem of finding $\varepsilon$-approximate solutions to linear systems with respect to the $L_2$-norm, that is, given a satisfiable linear system $(A \in \mathbb{R}{n \times n}, b \in \mathbb{R}n)$, find an $x \in \mathbb{R}n$ such that $||Ax - b||_2 \leq \varepsilon||b||_2$. Our main result is a fine-grained reduction from computing the rank of a matrix to finding $\varepsilon$-approximate solutions to linear systems. In particular, if the best known $O(n\omega)$ time algorithm for computing the rank of $n \times O(n)$ matrices is optimal (which we conjecture is true), then finding an $\varepsilon$-approximate solution to a dense linear system also requires $\tilde{\Omega}(n{\omega})$ time, even for $\varepsilon$ as large as $(1 - 1/\text{poly}(n))$. We also prove (under some modified conjectures for the rank-finding problem) optimal hardness of approximation for sparse linear systems, linear systems over positive semidefinite matrices, well-conditioned linear systems, and approximately solving linear systems with respect to the $L_p$-norm, for $p \geq 1$. At the heart of our results is a novel reduction from the rank problem to a decision version of the approximate linear systems problem. This reduction preserves properties such as matrix sparsity and bit complexity.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mitali Bafna (18 papers)
  2. Nikhil Vyas (26 papers)
Citations (6)