Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homomorphic Hashing for Sparse Coefficient Extraction (1203.4063v1)

Published 19 Mar 2012 in cs.CC

Abstract: We study classes of Dynamic Programming (DP) algorithms which, due to their algebraic definitions, are closely related to coefficient extraction methods. DP algorithms can easily be modified to exploit sparseness in the DP table through memorization. Coefficient extraction techniques on the other hand are both space-efficient and parallelisable, but no tools have been available to exploit sparseness. We investigate the systematic use of homomorphic hash functions to combine the best of these methods and obtain improved space-efficient algorithms for problems including LINEAR SAT, SET PARTITION, and SUBSET SUM. Our algorithms run in time proportional to the number of nonzero entries of the last segment of the DP table, which presents a strict improvement over sparse DP. The last property also gives an improved algorithm for CNF SAT with sparse projections.

Citations (11)

Summary

We haven't generated a summary for this paper yet.