Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence of equilibria in countable games: an algebraic approach (1203.2301v3)

Published 11 Mar 2012 in cs.GT and math.GR

Abstract: Although mixed extensions of finite games always admit equilibria, this is not the case for countable games, the best-known example being Wald's pick-the-larger-integer game. Several authors have provided conditions for the existence of equilibria in infinite games. These conditions are typically of topological nature and are rarely applicable to countable games. Here we establish an existence result for the equilibrium of countable games when the strategy sets are a countable group and the payoffs are functions of the group operation. In order to obtain the existence of equilibria, finitely additive mixed strategies have to be allowed. This creates a problem of selection of a product measure of mixed strategies. We propose a family of such selections and prove existence of an equilibrium that does not depend on the selection. As a byproduct we show that if finitely additive mixed strategies are allowed, then Wald's game admits an equilibrium. We also prove existence of equilibria for nontrivial extensions of matching-pennies and rock-scissors-paper. Finally we extend the main results to uncountable games.

Citations (18)

Summary

We haven't generated a summary for this paper yet.