Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Oracle Algorithm to Solve Continuous Games (2109.04178v2)

Published 9 Sep 2021 in cs.GT and math.OC

Abstract: Continuous games are multiplayer games in which strategy sets are compact and utility functions are continuous. These games typically have a highly complicated structure of Nash equilibria, and numerical methods for the equilibrium computation are known only for particular classes of continuous games, such as two-player polynomial games or games in which pure equilibria are guaranteed to exist. This contribution focuses on the computation and approximation of a mixed strategy equilibrium for the whole class of multiplayer general-sum continuous games. We vastly extend the scope of applicability of the double oracle algorithm, initially designed and proved to converge only for two-player zero-sum games. Specifically, we propose an iterative strategy generation technique, which splits the original problem into the master problem with only a finite subset of strategies being considered, and the subproblem in which an oracle finds the best response of each player. This simple method is guaranteed to recover an approximate equilibrium in finitely many iterations. Further, we argue that the Wasserstein distance (the earth mover's distance) is the right metric for the space of mixed strategies for our purposes. Our main result is the convergence of this algorithm in the Wasserstein distance to an equilibrium of the original continuous game. The numerical experiments show the performance of our method on several classes of games including randomly generated examples.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. T. Kroupa (5 papers)
  2. T. Votroubek (1 paper)
Citations (6)

Summary

We haven't generated a summary for this paper yet.