Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Facticity as the amount of self-descriptive information in a data set (1203.2245v1)

Published 10 Mar 2012 in cs.IT and math.IT

Abstract: Using the theory of Kolmogorov complexity the notion of facticity {\phi}(x) of a string is defined as the amount of self-descriptive information it contains. It is proved that (under reasonable assumptions: the existence of an empty machine and the availability of a faithful index) facticity is definite, i.e. random strings have facticity 0 and for compressible strings 0 < {\phi}(x) < 1/2 |x| + O(1). Consequently facticity measures the tension in a data set between structural and ad-hoc information objectively. For binary strings there is a so-called facticity threshold that is dependent on their entropy. Strings with facticty above this threshold have no optimal stochastic model and are essentially computational. The shape of the facticty versus entropy plot coincides with the well-known sawtooth curves observed in complex systems. The notion of factic processes is discussed. This approach overcomes problems with earlier proposals to use two-part code to define the meaningfulness or usefulness of a data set.

Citations (17)

Summary

We haven't generated a summary for this paper yet.