Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compression Complexity (1702.04779v1)

Published 15 Feb 2017 in cs.CC

Abstract: The Kolmogorov complexity of x, denoted C(x), is the length of the shortest program that generates x. For such a simple definition, Kolmogorov complexity has a rich and deep theory, as well as applications to a wide variety of topics including learning theory, complexity lower bounds and SAT algorithms. Kolmogorov complexity typically focuses on decompression, going from the compressed program to the original string. This paper develops a dual notion of compression, the mapping from a string to its compressed version. Typical lossless compression algorithms such as Lempel-Ziv or Huffman Encoding always produce a string that will decompress to the original. We define a general compression concept based on this observation. For every m, we exhibit a single compression algorithm q of length about m which for n and strings x of length n >= m, the output of q will have length within n-m+O(1) bits of C(x). We also show this bound is tight in a strong way, for every n >= m there is an x of length n with C(x) about m such that no compression program of size slightly less than m can compress x at all. We also consider a polynomial time-bounded version of compression complexity and show that similar results for this version would rule out cryptographic one-way functions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.