Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A General Class of Collatz Sequence and Ruin Problem (1203.2229v1)

Published 10 Mar 2012 in nlin.CD, math.CO, and math.PR

Abstract: In this paper we show the probabilistic convergence of the original Collatz (3n + 1) (or Hotpo) sequence to unity. A generalized form of the Collatz sequence (GCS) is proposed subsequently. Unlike Hotpo, an instance of a GCS can converge to integers other than unity. A GCS can be generated using the concept of an abstract machine performing arithmetic operations on different numerical bases. Original Collatz sequence is then proved to be a special case of GCS on base 2. The stopping time of GCS sequences is shown to possess remarkable statistical behavior. We conjecture that the Collatz convergence elicits existence of attractor points in digital chaos generated by arithmetic operations on numbers. We also model Collatz convergence as a classical ruin problem on the digits of a number in a base in which the abstract machine is computing and establish its statistical behavior. Finally an average bound on the stopping time of the sequence is established that grows linearly with the number of digits.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.