Papers
Topics
Authors
Recent
Search
2000 character limit reached

A General Class of Collatz Sequence and Ruin Problem

Published 10 Mar 2012 in nlin.CD, math.CO, and math.PR | (1203.2229v1)

Abstract: In this paper we show the probabilistic convergence of the original Collatz (3n + 1) (or Hotpo) sequence to unity. A generalized form of the Collatz sequence (GCS) is proposed subsequently. Unlike Hotpo, an instance of a GCS can converge to integers other than unity. A GCS can be generated using the concept of an abstract machine performing arithmetic operations on different numerical bases. Original Collatz sequence is then proved to be a special case of GCS on base 2. The stopping time of GCS sequences is shown to possess remarkable statistical behavior. We conjecture that the Collatz convergence elicits existence of attractor points in digital chaos generated by arithmetic operations on numbers. We also model Collatz convergence as a classical ruin problem on the digits of a number in a base in which the abstract machine is computing and establish its statistical behavior. Finally an average bound on the stopping time of the sequence is established that grows linearly with the number of digits.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.