Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Modeling Dependency between MapReduce Configuration Parameters and Total Execution Time (1203.0651v1)

Published 3 Mar 2012 in cs.DC

Abstract: In this paper, we propose an analytical method to model the dependency between configuration parameters and total execution time of Map-Reduce applications. Our approach has three key phases: profiling, modeling, and prediction. In profiling, an application is run several times with different sets of MapReduce configuration parameters to profile the execution time of the application on a given platform. Then in modeling, the relation between these parameters and total execution time is modeled by multivariate linear regression. Among the possible configuration parameters, two main parameters have been used in this study: the number of Mappers, and the number of Reducers. For evaluation, two standard applications (WordCount, and Exim Mainlog parsing) are utilized to evaluate our technique on a 4-node MapReduce platform.

Citations (23)

Summary

We haven't generated a summary for this paper yet.