Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference in Hidden Markov Models with Explicit State Duration Distributions (1203.0038v1)

Published 29 Feb 2012 in stat.ML and cs.LG

Abstract: In this letter we borrow from the inference techniques developed for unbounded state-cardinality (nonparametric) variants of the HMM and use them to develop a tuning-parameter free, black-box inference procedure for Explicit-state-duration hidden Markov models (EDHMM). EDHMMs are HMMs that have latent states consisting of both discrete state-indicator and discrete state-duration random variables. In contrast to the implicit geometric state duration distribution possessed by the standard HMM, EDHMMs allow the direct parameterisation and estimation of per-state duration distributions. As most duration distributions are defined over the positive integers, truncation or other approximations are usually required to perform EDHMM inference.

Citations (49)

Summary

We haven't generated a summary for this paper yet.