Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive sensing using deterministic partial Hadamard matrices (1202.6555v1)

Published 29 Feb 2012 in cs.IT and math.IT

Abstract: This paper investigates the construction of deterministic matrices preserving the entropy of random vectors with a given probability distribution. In particular, it is shown that for random vectors having i.i.d. discrete components, this is achieved by selecting a subset of rows of a Hadamard matrix such that (i) the selection is deterministic (ii) the fraction of selected rows is vanishing. In contrast, it is shown that for random vectors with i.i.d. continuous components, no partial Hadamard matrix of reduced dimension allows to preserve the entropy. These results are in agreement with the results of Wu-Verdu on almost lossless analog compression. This paper is however motivated by the complexity attribute of Hadamard matrices, which allows the use of efficient and stable reconstruction algorithms. The proof technique is based on a polar code martingale argument and on a new entropy power inequality for integer-valued random variables.

Citations (22)

Summary

We haven't generated a summary for this paper yet.