Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximately Hadamard matrices and Riesz bases in random frames (2207.07523v2)

Published 15 Jul 2022 in math.PR, cs.NA, and math.NA

Abstract: An $n \times n$ matrix with $\pm 1$ entries which acts on $\mathbb{R}n$ as a scaled isometry is called Hadamard. Such matrices exist in some, but not all dimensions. Combining number-theoretic and probabilistic tools we construct matrices with $\pm 1$ entries which act as approximate scaled isometries in $\mathbb{R}n$ for all $n$. More precisely, the matrices we construct have condition numbers bounded by a constant independent of $n$. Using this construction, we establish a phase transition for the probability that a random frame contains a Riesz basis. Namely, we show that a random frame in $\mathbb{R}n$ formed by $N$ vectors with independent identically distributed coordinates having a non-degenerate symmetric distribution contains many Riesz bases with high probability provided that $N \ge \exp(Cn)$. On the other hand, we prove that if the entries are subgaussian, then a random frame fails to contain a Riesz basis with probability close to $1$ whenever $N \le \exp(cn)$, where $c<C$ are constants depending on the distribution of the entries.

Citations (3)

Summary

We haven't generated a summary for this paper yet.