Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Filtered Fictitious Play for Perturbed Observation Potential Games and Decentralised POMDPs (1202.3705v1)

Published 14 Feb 2012 in cs.GT and cs.AI

Abstract: Potential games and decentralised partially observable MDPs (Dec-POMDPs) are two commonly used models of multi-agent interaction, for static optimisation and sequential decisionmaking settings, respectively. In this paper we introduce filtered fictitious play for solving repeated potential games in which each player's observations of others' actions are perturbed by random noise, and use this algorithm to construct an online learning method for solving Dec-POMDPs. Specifically, we prove that noise in observations prevents standard fictitious play from converging to Nash equilibrium in potential games, which also makes fictitious play impractical for solving Dec-POMDPs. To combat this, we derive filtered fictitious play, and provide conditions under which it converges to a Nash equilibrium in potential games with noisy observations. We then use filtered fictitious play to construct a solver for Dec-POMDPs, and demonstrate our new algorithm's performance in a box pushing problem. Our results show that we consistently outperform the state-of-the-art Dec-POMDP solver by an average of 100% across the range of noise in the observation function.

Citations (3)

Summary

We haven't generated a summary for this paper yet.