Papers
Topics
Authors
Recent
Search
2000 character limit reached

Refined Chern-Simons Theory and Knot Homology

Published 12 Feb 2012 in hep-th | (1202.2489v1)

Abstract: The refined Chern-Simons theory is a one-parameter deformation of the ordinary Chern-Simons theory on Seifert manifolds. It is defined via an index of the theory on N M5 branes, where the corresponding one-parameter deformation is a natural deformation of the geometric background. Analogously with the unrefined case, the solution of refined Chern-Simons theory is given in terms of S and T matrices, which are the proper Macdonald deformations of the usual ones. This provides a direct way to compute refined Chern-Simons invariants of a wide class of three-manifolds and knots. The knot invariants of refined Chern-Simons theory are conjectured to coincide with the knot superpolynomials -- Poincare polynomials of the triply graded knot homology theory. This conjecture is checked for a large number of torus knots in S3, colored by the fundamental representation. This is a short, expository version of arXiv:1105.5117, with some new results included.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 18 likes about this paper.