Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

A Graph Theoretical Approach to Network Encoding Complexity (1202.0747v2)

Published 3 Feb 2012 in cs.IT and math.IT

Abstract: Consider an acyclic directed network $G$ with sources $S_1, S_2,..., S_l$ and distinct sinks $R_1, R_2,..., R_l$. For $i=1, 2,..., l$, let $c_i$ denote the min-cut between $S_i$ and $R_i$. Then, by Menger's theorem, there exists a group of $c_i$ edge-disjoint paths from $S_i$ to $R_i$, which will be referred to as a group of Menger's paths from $S_i$ to $R_i$ in this paper. Although within the same group they are edge-disjoint, the Menger's paths from different groups may have to merge with each other. It is known that by choosing Menger's paths appropriately, the number of mergings among different groups of Menger's paths is always bounded by a constant, which is independent of the size and the topology of $G$. The tightest such constant for the all the above-mentioned networks is denoted by $\mathcal{M}(c_1, c_2,..., c_2)$ when all $S_i$'s are distinct, and by $\mathcal{M}*(c_1, c_2,..., c_2)$ when all $S_i$'s are in fact identical. It turns out that $\mathcal{M}$ and $\mathcal{M}*$ are closely related to the network encoding complexity for a variety of networks, such as multicast networks, two-way networks and networks with multiple sessions of unicast. Using this connection, we compute in this paper some exact values and bounds in network encoding complexity using a graph theoretical approach.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.