Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The maximum number of minimal codewords in long codes (1201.6043v2)

Published 29 Jan 2012 in cs.IT, math.CO, and math.IT

Abstract: Upper bounds on the maximum number of minimal codewords in a binary code follow from the theory of matroids. Random coding provide lower bounds. In this paper we compare these bounds with analogous bounds for the cycle code of graphs. This problem (in the graphic case) was considered in 1981 by Entringer and Slater who asked if a connected graph with $p$ vertices and $q$ edges can have only slightly more that $2{q-p}$ cycles. The bounds in this note answer this in the affirmative for all graphs except possibly some that have fewer than $2p+3\log_2(3p)$ edges. We also conclude that an Eulerian (even) graph has at most $2{q-p}$ cycles unless the graph is a subdivision of a 4-regular graph that is the edge-disjoint union of two Hamiltonian cycles, in which case it may have as many as $2{q-p}+p$ cycles.

Citations (14)

Summary

We haven't generated a summary for this paper yet.