Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the lower bound for the length of minimal codes (2302.05350v1)

Published 10 Feb 2023 in cs.IT, math.CO, and math.IT

Abstract: In recent years, many connections have been made between minimal codes, a classical object in coding theory, and other remarkable structures in finite geometry and combinatorics. One of the main problems related to minimal codes is to give lower and upper bounds on the length $m(k,q)$ of the shortest minimal codes of a given dimension $k$ over the finite field $\mathbb{F}q$. It has been recently proved that $m(k, q) \geq (q+1)(k-1)$. In this note, we prove that $\liminf{k \rightarrow \infty} \frac{m(k, q)}{k} \geq (q+ \varepsilon(q) )$, where $\varepsilon$ is an increasing function such that $1.52 <\varepsilon(2)\leq \varepsilon(q) \leq \sqrt{2} + \frac{1}{2}$. Hence, the previously known lower bound is not tight for large enough $k$. We then focus on the binary case and prove some structural results on minimal codes of length $3(k-1)$. As a byproduct, we are able to show that, if $k = 5 \pmod 8$ and for other small values of $k$, the bound is not tight.

Citations (6)

Summary

We haven't generated a summary for this paper yet.