Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

A Mock Data Challenge for the Einstein Gravitational-Wave Telescope (1201.3563v2)

Published 17 Jan 2012 in gr-qc, astro-ph.CO, and astro-ph.IM

Abstract: Einstein Telescope (ET) is conceived to be a third generation gravitational-wave observatory. Its amplitude sensitivity would be a factor ten better than advanced LIGO and Virgo and it could also extend the low-frequency sensitivity down to 1--3 Hz, compared to the 10--20 Hz of advanced detectors. Such an observatory will have the potential to observe a variety of different GW sources, including compact binary systems at cosmological distances. ET's expected reach for binary neutron star (BNS) coalescences is out to redshift $z\simeq 2$ and the rate of detectable BNS coalescences could be as high as one every few tens or hundreds of seconds, each lasting up to several days. %in the sensitive frequency band of ET. With such a signal-rich environment, a key question in data analysis is whether overlapping signals can be discriminated. In this paper we simulate the GW signals from a cosmological population of BNS and ask the following questions: Does this population create a confusion background that limits ET's ability to detect foreground sources? How efficient are current algorithms in discriminating overlapping BNS signals? Is it possible to discern the presence of a population of signals in the data by cross-correlating data from different detectors in the ET observatory? We find that algorithms currently used to analyze LIGO and Virgo data are already powerful enough to detect the sources expected in ET, but new algorithms are required to fully exploit ET data.

Citations (81)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.