Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CARMA Processes driven by Non-Gaussian Noise (1201.0155v1)

Published 30 Dec 2011 in math.PR, math.ST, and stat.TH

Abstract: We present an outline of the theory of certain L\'evy-driven, multivariate stochastic processes, where the processes are represented by rational transfer functions (Continuous-time AutoRegressive Moving Average or CARMA models) and their applications in non-Gaussian time series modelling. We discuss in detail their definition, their spectral representation, the equivalence to linear state space models and further properties like the second order structure and the tail behaviour under a heavy-tailed input. Furthermore, we study the estimation of the parameters using quasi-maximum likelihood estimates for the auto-regressive and moving average parameters, as well as how to estimate the driving L\'evy process.

Summary

We haven't generated a summary for this paper yet.