Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A unified formulation of Gaussian vs. sparse stochastic processes - Part II: Discrete-domain theory (1108.6152v2)

Published 31 Aug 2011 in cs.IT, math.IT, and math.PR

Abstract: This paper is devoted to the characterization of an extended family of CARMA (continuous-time autoregressive moving average) processes that are solutions of stochastic differential equations driven by white Levy innovations. These are completely specified by: (1) a set of poles and zeros that fixes their correlation structure, and (2) a canonical infinitely-divisible probability distribution that controls their degree of sparsity (with the Gaussian model corresponding to the least sparse scenario). The generalized CARMA processes are either stationary or non-stationary, depending on the location of the poles in the complex plane. The most basic non-stationary representatives (with a single pole at the origin) are the Levy processes, which are the non-Gaussian counterparts of Brownian motion. We focus on the general analog-to-discrete conversion problem and introduce a novel spline-based formalism that greatly simplifies the derivation of the correlation properties and joint probability distributions of the discrete versions of these processes. We also rely on the concept of generalized increment process, which suppresses all long range dependencies, to specify an equivalent discrete-domain innovation model. A crucial ingredient is the existence of a minimally-supported function associated with the whitening operator L; this B-spline, which is fundamental to our formulation, appears in most of our formulas, both at the level of the correlation and the characteristic function. We make use of these discrete-domain results to numerically generate illustrative examples of sparse signals that are consistent with the continuous-domain model.

Citations (45)

Summary

We haven't generated a summary for this paper yet.