Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher $K$-Groups of Smooth Projective Curves Over Finite Fields (1112.5920v1)

Published 27 Dec 2011 in math.NT

Abstract: Let $X$ be a smooth projective curve over a finite field $\mathbb{F}$ with $q$ elements. For $m\geq 1,$ let $X_m$ be the curve $X$ over the finite field $\mathbb{F}_m$, the $m$-th extension of $\mathbb{F}.$ Let $K_n(m)$ be the $K$-group $K_n(X_m)$ of the smooth projective curve $X_m.$ In this paper, we study the structure of the groups $K_n(m).$ If $l$ is a prime, we establish an analogue of Iwasawa theorem in algebraic number theory for the orders of the $l$-primary part $K_n(lm){l}$ of $K_n(lm)$. In particular, when $X$ is an elliptic curve $E$ defined over $\mathbb{F},$ our method determines the structure of $K_n(E).$ Our results can be applied to construct an efficient {\bf DL} system in elliptic cryptography.

Summary

We haven't generated a summary for this paper yet.