Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Existence of global weak solutions to finitely extensible nonlinear bead-spring chain models for dilute polymers with variable density and viscosity (1112.4781v1)

Published 20 Dec 2011 in math.AP

Abstract: We show the existence of global-in-time weak solutions to a general class of coupled bead-spring chain models that arise from the kinetic theory of dilute solutions of nonhomogeneous polymeric liquids with noninteracting polymer chains, with finitely extensible nonlinear elastic (FENE) spring potentials. The class of models under consideration involves the unsteady incompressible Navier-Stokes equations with variable density and density-dependent dynamic viscosity in a bounded domain in two and three space dimensions, for the density, the velocity and the pressure of the fluid, with an elastic extra-stress tensor appearing on the right-hand side in the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined by the Kramers expression through the associated probability density that satisfies a Fokker-Planck-type parabolic equation, a crucial feature of which is the presence of a centre-of-mass diffusion term and a nonlinear density-dependent drag coefficient. With a bounded and positive initial density for the continuity equation; a square-integrable and divergence-free initial velocity datum for the Navier-Stokes equation; and a nonnegative initial probability density function for the Fokker-Planck equation, which has finite relative entropy with respect to the Maxwellian associated with the spring potential in the model, we prove, via a limiting procedure on certain regularization parameters, the existence of a global-in-time weak solution to the coupled Navier-Stokes-Fokker-Planck system, satisfying the given initial condition.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.