Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Power-Partible Reduction and Congruences for Apéry Numbers (2301.01985v4)

Published 5 Jan 2023 in math.CO and math.NT

Abstract: In this paper, we introduce the power-partible reduction for holonomic (or, P-recursive) sequences and apply it to obtain a series of congruences for Ap\'ery numbers $A_k$. In particular, we prove that, for any $r\in\mathbb{N}$, there exists an integer $\tilde{c}r$ such that \begin{equation*} \sum{k=0}{p-1}(2k+1){2r+1}A_k\equiv \tilde{c}_r p \pmod {p3} \end{equation*} holds for any prime $p>3$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com