Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CLT for Ornstein-Uhlenbeck branching particle system (1111.4559v2)

Published 19 Nov 2011 in math.PR

Abstract: In this paper we consider a branching particle system consisting of particles moving according to the Ornstein-Uhlenbeck process in $\Rd$ and undergoing a binary, supercritical branching with a constant rate $\lambda>0$. This system is known to fulfil a law of large numbers (under exponential scaling). In the paper we prove the corresponding central limit theorem. The limit and the CLT normalisation fall into three qualitatively different classes. In, what we call, the small branching rate case the situation resembles the classical one. The weak limit is Gaussian and normalisation is the square root of the size of the system. In the critical case the limit is still Gaussian, however the normalisation requires an additional term. Finally, when branching has large rate the situation is completely different. The limit is no longer Gaussian, the normalisation is substantially larger than the classical one and the convergence holds in probability. We prove also that the spatial fluctuations are asymptotically independent of the fluctuations of the total number of particles (which is a Galton-Watson process).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.