Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the stability and accuracy of least squares approximations (1111.4422v3)

Published 18 Nov 2011 in math.NA

Abstract: We consider the problem of reconstructing an unknown function $f$ on a domain $X$ from samples of $f$ at $n$ randomly chosen points with respect to a given measure $\rho_X$. Given a sequence of linear spaces $(V_m)_{m>0}$ with ${\rm dim}(V_m)=m\leq n$, we study the least squares approximations from the spaces $V_m$. It is well known that such approximations can be inaccurate when $m$ is too close to $n$, even when the samples are noiseless. Our main result provides a criterion on $m$ that describes the needed amount of regularization to ensure that the least squares method is stable and that its accuracy, measured in $L2(X,\rho_X)$, is comparable to the best approximation error of $f$ by elements from $V_m$. We illustrate this criterion for various approximation schemes, such as trigonometric polynomials, with $\rho_X$ being the uniform measure, and algebraic polynomials, with $\rho_X$ being either the uniform or Chebyshev measure. For such examples we also prove similar stability results using deterministic samples that are equispaced with respect to these measures.

Summary

We haven't generated a summary for this paper yet.