Papers
Topics
Authors
Recent
2000 character limit reached

Kissing numbers for surfaces

Published 15 Nov 2011 in math.GT and math.DG | (1111.3573v1)

Abstract: The so-called {\it kissing number} for hyperbolic surfaces is the maximum number of homotopically distinct systoles a surface of given genus $g$ can have. These numbers, first studied (and named) by Schmutz Schaller by analogy with lattice sphere packings, are known to grow, as a function of genus, at least like $g{\sfrac{4}{3}-\epsilon}$ for any $\epsilon >0$. The first goal of this article is to give upper bounds on these numbers; in particular the growth is shown to be sub-quadratic. In the second part, a construction of (non hyperbolic) surfaces with roughly $g{\sfrac{3}{2}}$ systoles is given.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.