The measurable Kesten theorem
Abstract: We give explicit estimates between the spectral radius and the densities of short cycles for finite d-regular graphs. This allows us to show that the essential girth of a finite d-regular Ramanujan graph G is at least c log log |G|. We prove that infinite d-regular Ramanujan unimodular random graphs are trees. Using Benjamini-Schramm convergence this leads to a rigidity result saying that if most eigenvalues of a d-regular finite graph G fall in the Alon-Boppana region, then the eigenvalue distribution of G is close to the spectral measure of the d-regular tree. Kesten showed that if a Cayley graph has the same spectral radius as its universal cover, then it must be a tree. We generalize this to unimodular random graphs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.