Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

The measurable Kesten theorem (1111.2080v3)

Published 8 Nov 2011 in math.PR, math.CO, and math.GR

Abstract: We give explicit estimates between the spectral radius and the densities of short cycles for finite d-regular graphs. This allows us to show that the essential girth of a finite d-regular Ramanujan graph G is at least c log log |G|. We prove that infinite d-regular Ramanujan unimodular random graphs are trees. Using Benjamini-Schramm convergence this leads to a rigidity result saying that if most eigenvalues of a d-regular finite graph G fall in the Alon-Boppana region, then the eigenvalue distribution of G is close to the spectral measure of the d-regular tree. Kesten showed that if a Cayley graph has the same spectral radius as its universal cover, then it must be a tree. We generalize this to unimodular random graphs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.